翻訳と辞書 |
Quantum invariant : ウィキペディア英語版 | Quantum invariant In the mathematical field of knot theory, a quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.
==List of invariants==
*Finite type invariant *Kontsevich invariant *Kashaev's invariant *Witten–Reshetikhin–Turaev invariant (Chern–Simons) *Invariant differential operator *Turaev–Viro invariant *Dijkgraaf–Witten invariant 〔http://hal.archives-ouvertes.fr/docs/00/09/02/99/PDF/equality_arxiv_1.pdf〕 *Reshetikhin–Turaev invariant *Tau-invariant *I-Invariant *Klein J-invariant *Quantum isotopy invariant 〔http://knot.kaist.ac.kr/7thkgtf/Lawton1.pdf〕 *Ermakov–Lewis invariant *Hermitian invariant *Goussarov–Habiro theory of finite-type invariant *Linear quantum invariant (orthogonal function invariant) *Murakami–Ohtsuki TQFT *Generalized Casson invariant *Casson-Walker invariant *Khovanov–Rozansky invariant *HOMFLY polynomial *K-theory invariants *Atiyah–Patodi–Singer eta invariant *Link invariant 〔(Invariants of 3-manifolds via link polynomials and quantum groups - Springer )〕 *Casson invariant *Seiberg–Witten invariant *Gromov–Witten invariant *Arf invariant *Hopf invariant
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Quantum invariant」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|